A Numerical Method for Approximating the Solution of a Lotka-volterra System with Two Delays
نویسنده
چکیده
In this paper, using the step method, we established the existence and uniqueness of solution for the system (1.2) with initial condition (1.3). The aim of this paper is to present a numerical method for this system. 1. The statement of the problem Consider the following Lotka-Volterra type delay differential system: xi(t) = xi(t)ri(t) { ci − aixi(t)− n ∑
منابع مشابه
Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear d...
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملHaar Wavelet Method to Solve Volterra Integral Equations with Weakly Singular Kernel by Collocation Method
Volterra integral equations arise in many problems pertaining to mathematical physics like heat conduction problems. Several numerical methods for approximating the solution of Volterra integral equations are known [1-10]. This paper is focused on the solution of Volterra integral equations of the second kind with weakly singular kernel via Haar function by taking advantage of the nice properti...
متن کامل